Russell's paradox - определение. Что такое Russell's paradox
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Russell's paradox - определение

PARADOX IN SET THEORY CONCERING THE SET OF ALL SETS NOT CONTAINING THEMSELVES
Russells Paradox; List of all lists which do not contain themselves; Russell's Paradox; Russell set; Russel's paradox; Paradosso di Russell; Russell paradox; Russell's antinomy; Bertrand Russell Paradox; Russels paradox; Russell's antinome; Russel paradox; Russell antinomy; Set of all sets that do not contain themselves; The set of all sets that do not contain themselves; Set of sets that do not contain themselves; Set of sets that don't contain themselves; Russell's antinomie; Russell’s paradox; Principle of comprehension; User:Lulu of the Lotus-Eaters/List of every Wikipedia list that does not contain itself; Russells paradox; Russell Paradox; Russells' Paradox; Russells's Paradox; Does the set of all sets contain itself?; Does the set of all sets contain itself; List of lists that don't include themselves
Найдено результатов: 398
Russell's Paradox         
<mathematics> A logical contradiction in set theory discovered by Bertrand Russell. If R is the set of all sets which don't contain themselves, does R contain itself? If it does then it doesn't and vice versa. The paradox stems from the acceptance of the following axiom: If P(x) is a property then x : P is a set. This is the Axiom of Comprehension (actually an axiom schema). By applying it in the case where P is the property "x is not an element of x", we generate the paradox, i.e. something clearly false. Thus any theory built on this axiom must be inconsistent. In lambda-calculus Russell's Paradox can be formulated by representing each set by its characteristic function - the property which is true for members and false for non-members. The set R becomes a function r which is the negation of its argument applied to itself: r = x . not (x x) If we now apply r to itself, r r = ( x . not (x x)) ( x . not (x x)) = not (( x . not (x x))( x . not (x x))) = not (r r) So if (r r) is true then it is false and vice versa. An alternative formulation is: "if the barber of Seville is a man who shaves all men in Seville who don't shave themselves, and only those men, who shaves the barber?" This can be taken simply as a proof that no such barber can exist whereas seemingly obvious axioms of set theory suggest the existence of the paradoxical set R. Zermelo Frankel set theory is one "solution" to this paradox. Another, type theory, restricts sets to contain only elements of a single type, (e.g. integers or sets of integers) and no type is allowed to refer to itself so no set can contain itself. A message from Russell induced Frege to put a note in his life's work, just before it went to press, to the effect that he now knew it was inconsistent but he hoped it would be useful anyway. (2000-11-01)
Russell's paradox         
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901.Russell, Bertrand, "Correspondence with Frege}.
D'Alembert's paradox         
  • Jean le Rond d'Alembert (1717-1783)
  • Steady and separated incompressible potential flow around a plate in two dimensions,<ref>Batchelor (2000), p. 499, eq. (6.13.12).</ref> with a constant pressure along the two free streamlines separating from the plate edges.
  • wake]],<br>
•5: post-critical separated flow, with a turbulent boundary layer.
  • Pressure distribution for the flow around a circular cylinder. The dashed blue line is the pressure distribution according to [[potential flow]] theory, resulting in d'Alembert's paradox. The solid blue line is the mean pressure distribution as found in experiments at high [[Reynolds number]]s. The pressure is the radial distance from the cylinder surface; a positive pressure (overpressure) is inside the cylinder, towards the centre, while a negative pressure (underpressure) is drawn outside the cylinder.
  • circular]] cylinder in a uniform onflow.
THE THEOREM THAT, FOR INCOMPRESSIBLE AND INVISCID POTENTIAL FLOW, THE DRAG FORCE IS 0 ON A BODY MOVING WITH CONSTANT VELOCITY RELATIVE TO THE FLUID, IN CONTRADICTION TO REAL LIFE, WHERE VISCOSITY CAUSES SUBSTANTIAL DRAG, ESPECIALLY AT HIGH VELOCITIES
D'Alembert's Paradox; D'Alembert paradox; Hydrodynamic paradox; D'Alembert Paradox; D'Alemberts Paradox; D'Alemberts' Paradox; Dalembert's Paradox; Hydrodynamical paradox; Hydrodynamics paradox; D'alembert's Paradox
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached in 1752 by French mathematician Jean le Rond d'Alembert.Jean le Rond d'Alembert (1752).
Paradox (literature)         
LITERARY DEVICE; ANOMALOUS JUXTAPOSITION OF INCONGRUOUS IDEAS FOR THE SAKE OF STRIKING EXPOSITION OR UNEXPECTED INSIGHT
Paradox of poetry; Literary paradox
In literature, the paradox is an anomalous juxtaposition of incongruous ideas for the sake of striking exposition or unexpected insight. It functions as a method of literary composition and analysis that involves examining apparently contradictory statements and drawing conclusions either to reconcile them or to explain their presence.
Curry's paradox         
A PARADOX IN WHICH AN ARBITRARY CLAIM F IS PROVED FROM THE MERE EXISTENCE OF A SENTENCE C THAT SAYS OF ITSELF “IF C, THEN F”
Curry's Paradox; Löb's paradox; Loeb's paradox; Lob's paradox; Curry paradox; Löb paradox; Lob paradox; Loeb paradox; Currys paradox; Curry’s paradox
Curry's paradox is a paradox in which an arbitrary claim F is proved from the mere existence of a sentence C that says of itself "If C, then F", requiring only a few apparently innocuous logical deduction rules. Since F is arbitrary, any logic having these rules allows one to prove everything.
Loschmidt's paradox         
IN PHYSICS, THE APPARENT CONTRADICTION THAT TIME-IRREVERSIBLE MACROPHYSICS ARISES FROM TIME-SYMMETRIC MICROPHYSICS
Reversibility paradox; Loschmidt paradox; Loschmidt's Paradox; Irreversibility paradox; Umkehreinwand
Loschmidt's paradox, also known as the reversibility paradox, irreversibility paradox or , is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics. This puts the time reversal symmetry of (almost) all known low-level fundamental physical processes at odds with any attempt to infer from them the second law of thermodynamics which describes the behaviour of macroscopic systems.
Card paradox         
Postcard paradox; Jourdain paradox; Jourdain's paradox; Card Paradox
The card paradox is a variant of the liar paradox constructed by Philip Jourdain. It is also known as the postcard paradox, Jourdain paradox or Jourdain's paradox.
Heat death paradox         
PARADOX RELATING TO FATE OF UNIVERSE
Thermodynamic paradox; Clausius paradox; Clausius' paradox
The heat death paradox, also known as thermodynamic paradox, Clausius' paradox and Kelvin’s paradox, is a reductio ad absurdum argument that uses thermodynamics to show the impossibility of an infinitely old universe. It was formulated in February 1862 by Lord Kelvin and expanded upon by Hermann von Helmholtz and William John Macquorn Rankine.
Grelling–Nelson paradox         
  • The first instance of the word "blue" is autological, while the second is heterological.
SELF-REFERENTIAL PARADOX: IS THE WORD “HETEROLOGICAL” (DEFINED AS REFERRING TO A WORD THAT DOES NOT DESCRIBE ITSELF) HETEROLOGICAL?
Weyl's paradox; Weyl's Paradox; Blardy; Grelling's paradox; Grelling paradox; Grellings paradox; Weyl paradox; Grelling-Nelson paradox; Heterological predicate
The Grelling–Nelson paradox is an antinomy, or a semantic self-referential paradox, concerning the applicability to itself of the word "[meaning "inapplicable to itself". It was formulated in 1908 by Kurt Grelling] and [[Leonard Nelson, and is sometimes mistakenly attributed to the German philosopher and mathematician Hermann Weyl.
Liberal paradox         
  • Amartya Sen, the creator of the liberal paradox
IN ECONOMIC THEORY, THE CLAIM THAT NO SOCIAL SYSTEM CAN SIMULTANEOUSLY ① BE COMMITTED TO A MINIMAL SENSE OF FREEDOM, ② ALWAYS RESULT IN PARETO EFFICIENCY, AND ③ BE CAPABLE OF FUNCTIONING IN ANY SOCIETY
Liberal Paradox; Sen's Paradox; Paretian liberal; Sen paradox; The Paretian-Liberal Impossibility Theorem; Paretian-Liberal Impossibility Theorem; The Impossibility of a Paretian Liberal; Paretian-liberal paradox
The liberal paradox, also Sen paradox or Sen's paradox, is a logical paradox proposed by Amartya Sen which shows that no means of aggregating individual preferences into a single, social choice, can simultaneously fulfill the following, seemingly mild conditions:

Википедия

Russell's paradox

In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, as he told Hilbert and Richard Dedekind by letter.

According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let R be the set of all sets that are not members of themselves. If R is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The resulting contradiction is Russell's paradox. In symbols:

Let  R = { x x x } , then  R R R R {\displaystyle {\text{Let }}R=\{x\mid x\not \in x\}{\text{, then }}R\in R\iff R\not \in R}

Russell also showed that a version of the paradox could be derived in the axiomatic system constructed by the German philosopher and mathematician Gottlob Frege, hence undermining Frege's attempt to reduce mathematics to logic and questioning the logicist programme. Two influential ways of avoiding the paradox were both proposed in 1908: Russell's own type theory and the Zermelo set theory. In particular, Zermelo's axioms restricted the unlimited comprehension principle. With the additional contributions of Abraham Fraenkel, Zermelo set theory developed into the now-standard Zermelo–Fraenkel set theory (commonly known as ZFC when including the axiom of choice). The main difference between Russell's and Zermelo's solution to the paradox is that Zermelo modified the axioms of set theory while maintaining a standard logical language, while Russell modified the logical language itself. The language of ZFC, with the help of Thoralf Skolem, turned out to be that of first-order logic.